An Isomonodromy Cluster of Two Regular Singularities
نویسنده
چکیده
We consider a linear 2 × 2 matrix ODE with two coalescing regular singularities. This coalescence is restricted with an isomonodromy condition with respect to the distance between the merging singularities in a way consistent with the ODE. In particular, a zero-distance limit for the ODE exists. The monodromy group of the limiting ODE is calculated in terms of the original one. This coalescing process generates a limit for the corresponding nonlinear systems of isomonodromy deformations. In our main example the latter limit reads as P6 → P5, where Pn is the n-th Painlevé equation. We also discuss some general problems which arise while studying the above-mentioned limits for the Painlevé equations. 2000 Mathematics Subject Classification: 34M55, 33E17, 33E30 Short title: Isomonodromy Cluster
منابع مشابه
Rings of Singularities
This paper is a slightly revised version of an introduction into singularity theory corresponding to a series of lectures given at the ``Advanced School and Conference on homological and geometrical methods in representation theory'' at the International Centre for Theoretical Physics (ICTP), Miramare - Trieste, Italy, 11-29 January 2010. We show how to associate to a triple of posit...
متن کاملSpecial Functions of the Isomonodromy Type
We introduce a new notion, a special function of the isomonodromy type, and show that most of the functions known in applied mathematics and mathematical physics as special functions belong to this type. This deenition provides a uniied approach to the theories of \linear" special functions, i.e., classical higher transcen-dental functions, and \non-linear" special functions, i.e.,the functions...
متن کاملIsomonodromy for the Degenerate Fifth Painlevé Equation
This is a sequel to papers by the last two authors making the Riemann–Hilbert correspondence and isomonodromy explicit. For the degenerate fifth Painlevé equation, the moduli spaces for connections and for monodromy are explicitly computed. It is proven that the extended Riemann–Hilbert morphism is an isomorphism. As a consequence these equations have the Painlevé property and the Okamoto–Painl...
متن کاملIsomonodromy Transformations of Linear Systems of Difference Equations
We introduce and study “isomonodromy” transformations of the matrix linear difference equation Y (z + 1) = A(z)Y (z) with polynomial (or rational) A(z). Our main result is a construction of an isomonodromy action of Zm(n+1)−1 on the space of coefficients A(z) (here m is the size of matrices and n is the degree of A(z)). The (birational) action of certain rank n subgroups can be described by dif...
متن کاملIntegrable Systems and Isomonodromy Deformations
We analyze in detail three classes of isomondromy deformation problems associated with integrable systems. The first two are related to the scaling invariance of the n× n AKNS hierarchies and the Gel’fand-Dikii hierarchies. The third arises in string theory as the representation of the Heisenberg group by [(L)+, L] = I where L is an nth order scalar differential operator. The monodromy data is ...
متن کامل